Lecture 6: An Application of DFS: Articulation points

Recall DFS algorithm:

```java
DFS(G) {
    for each v in V do // Initialize
        visit[v] = false;

    for each v in V do
        if (visit[v] == false) RDFS(v);
}

RDFS(v) {
    visit[v]=true;

    for each w in Adj(v) do
        if (visit[w] == false) {
            RDFS(w);
        }
}
```
Given a graph $G = (V, E)$, it traverses all vertices of G and constructs a forest (a collection of rooted trees), together with a set of source vertices (the roots).
Additional Information

- $\text{discover}[u]$ – the discovery time, a counter indicating when vertex u is discovered.

- $\text{pred}[u]$ – the predecessor of u, which discovered u.

DFS$\{G\}$ {
 for each v in V do // Initialize
 $\text{visit}[v] = \text{false};$
 $\text{pred}[v] = \text{NULL};$
 time=0;
 for each v in V do
 if (visit[v] == false) RDFS(v);
}

RDFS(v) {
 $\text{visit}[v]=\text{true};$
 discover[v] = ++time;
 for each w in Adj(v) do
 if (visit[w] == false) {
 pred[w]=v;
 RDFS(w);
 }
}

}
Classification of Edges

Tree edges: which are the edges \(\{ \text{pred}[v], v \} \) where DFS calls are made.

Back edges: which are the edges \(\{ u, v \} \) where \(v \) is an ancestor of \(u \) in the tree.
Definition: Let $G = (V, E)$ be a connected undirected graph. An articulation point (or cut vertex) of G is a vertex whose removal disconnects G.

Given a connected graph G, how to find all articulation points?
Articulation points: Easy solution

The easiest solution is to remove a vertex (and its corresponding edges) one by one from G and test whether the resulting graph is still connected or not (say by DFS). The running time is $O(V \times (V + E))$.
Articulation points: Observations

1. The root of the DFS tree is an articulation if it has two or more children.

2. Any other internal vertex v in the DFS tree, if it has a subtree rooted at a child of v that does NOT have an edge which climbs 'higher’ than v, then v is an articulation point.
Articulation points: How to climb up

Observe that for an undirected graph, it can only have tree edges or back edges. A subtree can only climb to the upper part of the tree by a back edge, and a vertex can only climb up to its ancestor.
Articulation points: Tackle observation 2

We make use of the discovery time in the DFS tree to define 'low' and 'high'. Observe that if we follow a path from an ancestor (high) to a descendant (low), the discovery time is in increasing order.

If there is a subtree rooted at a children of v which does not have a back edge connecting to a SMALLER discovery time than $\text{discover}[v]$, then v is an articulation point.

How do we know a subtree has a back edge climbing to an upper part of the tree?

Define $\text{Low}[v]$ be the smallest value of a subtree rooted at v to which it can climb up by a back edge.

$$\text{Low}[v] = \min\{\text{discover}[v], \text{discover}[w] : (u, w) \text{ is a back edge for some descendant } u \text{ of } v\}$$
RDFS_Compute_Low(v) {
 visit[v]=true;
 Low[v]=discover[v] = ++time;

 for each w in Adj(v) do
 if (visit[w] == false) {
 pred[w]=v;
 RDFS_Compute_Low(w);

 // When RDFS_Compute_Low(w) returns,
 // Low[w] stores the
 // lowest value it can climb up
 // for a subtree rooted at w.

 Low[v] = min(Low[v], Low[w]);
 } else if (w != pred[v]) {
 // {v, w} is a back edge
 Low[v] = min(Low[v], discover[w]);
 }
 }
}
Articulation points

Articulation points are now determined as follows:

1. The root of the DFS tree is an articulation point if it has two or more children.

2. Any other internal vertex v in the DFS tree is an articulation point if v has a child w such that $\text{Low}[w] \geq \text{discover}[v]$.

ArticulationPoints{
 for each v in V do
 if (pred[v] == NULL) { //v is a root
 if (|Adj(v)| > 1)
 articulation_point(v) = true;
 } else{
 for each w in Adj(v) do {
 if (Low[w] >= discover[v])
 articulation_point(v) = true;
 }
 }
 }

Running time = ?